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AbstracL We numerically solve the timedependent Ginzburg-Landau equation for a 
homogeneous, isotropic type,lI superconducting film in the presence of an external 
magnetic field. We study the dynamical p m e r s s  of the magnetization by stepwise 
change of the external field. It is demonstrated that the magnetic vortices penetrare and 
are expelled from the sysiem boundary in accord wiih the change of the field, and the 
dynamical instability of magnetic flux wall near the boundary leads to the formation of 
a vortex at low fields. The hysteresis loop of magnelization versus the external field is 
also oblained. 

The time-dependent Ginzburg-Landau (TDGL) equation is a useful starting equation 
in studying the dynamics of superconductors [l]. There appear to have been several 
numerical attempts to study stationay equilibrium states (not dynamical processes) 
for superconductors as functions of external field and/or temperature by using vari- 
ous non-linear optimization methods for the Ginzburg-Landau (GL) equation [& 31 
and London equation (41, as well as some analytic study [l]. However, despite its 
importance, little study of the ~ G L  equation has been done either analytically or 
numerically, due to its high degree of non-linearity andlor the coupling between 
the superconducting order parameter and vector potential. Recently, several authors 
have independently proposed numerical methods to solve the TDGL equation for vari- 
ous physical situations [Sa]. In this letter, using our previously described simulation 
method [S, 81, we briefly report the dynamical behaviour of the magnetization process 
on changing the external magnetic field. We particularly focus on the visualization of 
such dynamical processes, since little study from this point of view has been done. 

In the standard way we write the homogeneous, isotropic GL free energy functional 
F[@,A] with order parameter @(v- , t )  and vector potential A ( T ,  t )  at time t in 
position T as [l] 

with the covariant derivative D E -iEV - (e/c)A and the local magnetic induction 
field b ( ~ ,  t )  V x A. In this notation, two important characteristic length scales at 
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temperature T are defined as follows 111: the coherence length [(T) E d m  
and the magnetic penetration depth X(T) E dmcap/4ne2lal. Here we simply 
assume that at all temperatures E(T) f Eo(l - T/T,)-'/* and X(T) E Xo(l - 
T/T,)-'12 with T, being the superconducting transition temperature at zero field. As 
a result, the GL parameter K becomes independent of temperature, that is K = A,/[,, 
and the upper and lower critical fields are obtained as H,,(T) = Hcl(0)(l - T/T,) 
and H,,(T) = H c z ( 0 ) ( l  - T/T,),  respectively, where H,,(O) = n/4ntc2[,2 
and H c 2 ( 0 )  = +0/2nB with the flux quantum +o [I]. 

The TDGL equation is written down as [I] 

D - ' ( a / a t  + ie+/h)@ = -6F/S@* (2) 

u ( ( l / c ) a A / a t +  V + )  = - 6 F / 6 A  (3) 

where ( a / a t  +ie+/h) is a covariant time derivative invariant under the local U(l) 
gauge transformation with a scalar potential +, and @* is a complex conjugate to 
@. Here D and U are the normal-state diffusion constant and the conductivity, 
respectively. These quantities also have the relationship 

4nX(T)2u/cZ = ( ( T ) 2 / 1 2 D  E t,(l - T/T,)-' (4) 

with 

to E nh/8kBT,. (5) 

Using the Maxwell equations, equation (3) is interpreted as follows: the total current 
densityj E ( c / B n ) V x V x A  is equal to the normalcurrentj, 3 -u(BA/cat+V+) 
plus the super-current js 3 (e /2m)[Q* D@ + cc], where cc denotes a complex 
conjugate to @* DJI. These equations are supplemented with boundary conditions 
(sa): 

DO\,, = 0 (6) 

V x AI, = He (7)  

where the index n in (6) denotes the normal direction on the boundaly and the index 
s in (7) denotes the surface of the system. The BC (6) means that the system is 
surrounded by the insulator, while the BC (7) means that the vector potential on the 
boundary is determined by the external field He. 

Now we simulate equations (2) and (3) with BCS (6) and (7) for a type-I1 su- 
perconducting film by changing the extemal field stepwise. Here, we use a gauge 
in which the scalar potential is zero [5, 81 and we have also neglected the thermal 
noise. We consider a thin film in the I-y plane with a magnetic field applied along 
the z-direction, that is, He = Hi, E being the unit vector along the L axis. TWO 
variables, 4, and A, are assumed to depend only on the coordinates I and y, and the 
thud components of A and D are also neglected. This situation may be physically 
realized [SI if E Q d << A, d being the thickness of the film. In the following, we take 
the units of lcngth to be to, time to be to, @ to be m, H to be W,,(O), 
and A to be [,H,,(O). Under these conditions, we solve the "DGL equation on a 
square lattice with 128' lattice points. In our simulations we choose the time step to 
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be 0.015 and the lattice spacing to be 0.5 (that is, 64E0 x 64E0 in physical units). We 
also set T/T,  = 0.5 and n = 2 so that HC,(0.5T,) = 0.04 and Hc,(0.5 T,) = 0.5 
in the present units. The initial state is taken to be a superconducting state [a[ = 1 
and A = (0,O) without the external field at T = 0.5TC [SI. We will not discuss 
the numerical procedures any further in this letter, but see [SI and [SI for detailed 
discussion of them. 

In the following, we simulate the magnetization process by stepwise change of the 
external field, H, with its increment [AH[ = 0.05. In the present simulations, the 
external field is changed as follows: first the field is increased from zero to 0.45, and 
then decreased from 0.45 to -0.45. and finally increased again to 0.45. Regarding the 
preceding state obtained at the field H - A H  as a new initial state, we have run the 
simulation at each value of H for a rather longer period. The period is taken such 
that the system may be in the stable equilibrium state associated with each external 
field, or at least in the quasi-stable state which is different from the stable one in the 
arrangement of vortices, as is discussed later. In actual simulations, we set the period 
to be lo5 steps. We have numerically checked that for each value of H the value 
of magnetic induction E after such long periods hardly alters. Here the magnetic 
induction B is obtained from the local induction field b z ( r , t )  E aA,/ay-aA,/az 
as E E ( l / V ) J d r  b, with system volume V (1282 in this case). We have also 
checked that the magnetic induction field at long periods penetrates into the system 
over the range of order X from the boundary. 

Figure 1. Time evolution of the spatial patterns of (a )  b ,  and (b) IQI, after H is 
increased to 0.25 from 0.20 at t = 6000. The contour l i n s  are shown with interval 0.02 
for b,  and 0.2 for pl. 
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In figures I(Q) and (b) we show the time evolution of the local magnetic induction 
field b, and the amplitude of the order parameter, IQI, respectively, after the external 
field H is increased to 0.25 from 0.20 at 1 = 6000. In these figures the magnetic 
flux first penetrates from the boundary to form walls, and simultaneously destroy the 
superconducting state. Then, the dynamical instability of such flux walls with their 
coalescence occurs to create magnetic vortices. Finally, the vortex structure tends to 
be gradually rearranged toward the so-called Abrikosov lattice structure. Such a late 
stage process is very slow as was pointed out previously [5-8], and the lattice is not 
yet completely regular in this time scale, probably due to the finiteness of the system 
sue and/or the simulation period. 

Figure 2. Time evolution of the spatial patterns of 
(a)  b ,  and (b) IQI, afler H is decreased to 0.25 
from 0.30 at t = 18000.  The contour lines are 
shown with inlclval 0.02 for b .  and 0.2 for [*I. 

In figures 2(a) and (b) we show the time evolution of b, and (iP 1, respectively, after 
H is decreased to 0.25 from 0.30 at 1 = 18000. In this case some of the vortices near 
the boundary have been pushed out of the system in the early stage according to the 
gradient of the induction field (figure 2(a)). Since then, the successive rearrangement 
of the remaining vortices is also observed to proceed very slowly. 

In figure 3 we show the time evolution of b,, after H is decreased to -0.20 from 
-0.15 at t = 31500. In this figure it is shown that the remaining positive vortices 
(that is, b, > 0 shown by thick lines) are expelled from the boundary or are absorbed 
into the negative flux boundaries shown by thin lines [6]. Then, the negative vortices 
are immediately created, due to the flux wall instability, in just the position where 
positive vortices disappear. 

In figures 4(a) and (b) we show the hysteresis loop of both the magnetic induction 
B and the magnetization M E (B - M)/47r against H, respectively. It has been 
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Figure 3. Time evolution of the spatial patlcms of 
bs> after H is decreased to -0.20 from -0.15 
at t = 31500. The contour lines arc shown with 
interval 0.02. Thick lines correspond to positive 
magnetic flux regions ( b ,  > 0),  while thin lines 
correspond to negative one8 ( b ,  < 0). 

Figure 4. Hyteresis lwp of (a) magnetic induction 
against atemal field (B-H) and (b)  magnetiza- 
tion against ntemal field (M-H). Tl~ese CUN- 
are obtained for li = 2 and T = 0.5 T, so that 
HCl(0 .5T , )  = 0.04HCz(0)  and H,1(O.5Tc) = 
0 .5Hcp(0 ) .  

shown that during one cycle of the field change a few vortices still remain even at 
H = 0 and thus the residual fields are indeed observed in this simulation. Note 
that similar results have also been obtained for \AH1 = 0.01. We have also found 
that with the increase of H from zero any vortices do not appear until 0.25, which 
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is far beyond the value of the lower critical field (0.04 in this case). Similarly, any 
negative vortices are not observed until -0.20 with the decrease of H. These results 
may suggest the importance of specimen surface and also the existence of a surface 
barrier associated with flux penetration and expulsion, which was pointed out in [9]. 
The above values of H and also the magnitude of residual field, however, may be 
expected to depend on the details of simulation conditions such as AH, time period, 
system size and so on. Further simulations are needed changing these parameters as 
well as the physical quantities such as IE and T. The results of these simulations, as 
well as comparison with those of critical state models 113, equilibrium magnetization 
curves [2], and experimental data, will be published in the near future [lo]. 

In summary, we have carried out several computer simulations of the isotropic, 
homogeneous TDGL equation for a type11 superconducting film in a magnetic field. 
We have demonstrated the dynamical processes of magnetization by changing the 
external field stepwise-such as magnetic flux penetration and its expulsion, and 
the formation and arrangement of vortex structures. We also have obtained the 
hysteresis curves on B-H and M-H diagrams. Although the present simulations 
have been done for only one parameter set and thus are still provisional, it is shown 
that the present direction of research may provide us with a uscful tool in studying 
the dynamical behaviour of superconductors. Fiially, we comment on our further 
investigations. Tb study the dynamics of recent high-temperature superconductors the 
present TDGLequation is inadequate and must be modified so as to include anisotropy, 
inhomogeneity, and Josephson interaction between layers as well as thermal noise 
[ll, 121. The present simulation method can be easily extended to such a system, 
as well as to a three-dimensional system. Moreover, the transport phenomena under 
the external current should be studied. These interesting problems are now under 
consideration. 

The authors are grateful to Professor S Maekawa for a number of usehl comments. 
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